kaolin

by ozkancol ozkancol Yorum yapılmamış

Ceviz’de hastalıklarla mücadelede Sun Shield Kaolin Uygulanması

Meteoroloji tarafından bildirilen hava sıcaklığının 35°C’yi aşması durumunda, ceviz meyvesinin direk güneş ışığı alan bölümlerinde, güneş ışığına maruz kalmaktan dolayı güneş yanıklıkları oluşur. Çünkü hava sıcaklığının 35°C olduğu durumda ceviz meyvesi yüzeyindeki sıcaklık yaklaşık  45°C-50°C’leri bulur.

Ceviz meyvesi üzerindeki güneş yanıklığı kendisini önce kabuk üzerindeki  sarı ve açık kahverengi lekeler oluşmasıyla gösterir. Sıcaklıkların sürekli yüksek seyretmesi durumunda, bu lekeler zamanla içe doğru yayılır, koyu kahverengi veya siyah renkli yaralanmalara dönüşür. Meyve olgunlaşma evresinin aşamalarına bağlı olarak meyve ya tümüyle kaybedilir ya da meyvenin pazar değerini düşüren kararmış iç oluşumu gözlenir.

Ceviz bitkisindeki güneş yanıklığı zararı sadece meyve ile sınırlı olmayıp, sıcaklık stresinin su stresi ile de birleşmesi durumunda yapraklarda da bronz ve kahverengi renkli lekeler oluşmaya başlar ve yapraklarda kavruk bir görünüm gözlemlenir.

Güneş yanıklığının oluşturduğu bu yaralar bakteriyel ve mantari hastalıklar içinde davetiye çıkarır. Birçok mantar bu yaralardan içeri girerek gelişmeye başlar ve zararın boyutları daha da artar. Üstelik bazen ceviz antrokozu ve güneş yanıklığı ayırt edilemeyecek kadar birbirine benzer belirtiler oluşturur.  Cevizdeki güneş yanığı zararı yetiştirilen bölge ve hava koşulları durumuna bağlı olarak  %30-%40’ları bulabilir.

Aşağıdaki resimde meyve, yaprak ve iç kısmında güneş yanıkılığının çeşitli zararları görülmektedir.

Özelikle yazın en sıcak günlerinde saat 11.00-16.00 arası meyve yüzey sıcaklığının en fazla arttığı zamanlardır.

Bu yüzden ceviz bitkisinde güneş yanıklığı mücadelesinde, mevsime göre hava durumu iyi takip edilmeli ve güneş yanıklığı zararını artırıcı su stresinin önüne geçecek dikkatli bir sulama programı uygulanmalıdır.

Güneş yanıklığı zararına karşı önlem olarak, büyüme sezonunun daha ilk evrelerinde meyveler daha bilye büyüklüğünde iken, yapılacak Sun Shield uygulaması, bitki yüzeyinde ince beyaz bir film tabakası oluşturarak, meyve yüzey sıcaklığını düşürmenin yanında, aniden bastıran sıcakların neden olabileceği meyve dökülmesini de önler.

Hem maliyeti düşük hem de sıradan ilaçlama ekipmanları ile uygulanabilecek bu yöntem, ucuz ve etkili bir çözüm yöntemi olması yanında bazı zararlılara karşıda kaçırıcı ve uzaklaştırıcı etkiye sahiptir. Bitki yüzeyini kaplayan mikron büyüklüğündeki beyaz parçacıkların her biri yansıtıcı bir ayna gibi davranıp bitkilerinizi güneşin zararlı ışınlarından korur. Bu türden bir uygulama yapılmış meyve üzerinde meyve yüzey sıcaklığı yaklaşık 4°C – 8°C arası düşmektedir. Kaolin kili uygulanmış ağaçlarda %20-30 oranında daha iri meyve elde edilir, cevizin meyve iç kalitesi yükselir ve daha fazla beyaz iç elde edilir.

Aşağıdaki resimde SunShield marka kaolin kili uygulanmış ceviz resimleri görülmektedir.

Kaolin kilinin koruyuculuğu sadece güneşin kavurucu ve yakıcı etkisiyle sınırlı olmayıp, ceviz yeşil kabuk sineği (Rhagoletiscompleta ) ve ceviz iç kurdu(Cydiapomonella) türünden zararlıların verdiği zararlar kaolin kili sayesinde önemli oranda düşmektedir. Kaolinin kili bu türden zararlılara kaçırıcı ve uzaklaştırıcı etkide bulunarak bunların meyve üzerine yumurta bırakmasını etkilemektedir.

 

DMRSÜREN Kimya Ltd Şti

0216 4421200-0216 4426626

0552 3307100-0552 3308100

www.kimyadeposu.com

Türkiyenin Kimya Deposu // Kimyadeposu.com

by ozkancol ozkancol Yorum yapılmamış

Kaolin Nedir? Nerelerde Kullanılır?

“Kaolin” kil hammaddeleri içinde Ca ve Na montmoryonit (bentonit) gibi tek mineralin başat olduğu yani diğer bir deyişle kaolinit minerali ile karakterize olan bir hammaddedir. Endüstriyel kullanımda “kalsine” edilmiş şeklide “kaolin” altında istatistiklere dahil edilir. Kaolinitik killer içinde kaolinitin zeginleştirilerek kullanıldığı hammaddeler kökenine bakılmaksızın “kaolin” olarak diğerleri ise kil hammaddelerine dahil edilmektedir. Örneğin ball kilide kaolinitik bir kil olduğu halde “kaolin” olarak zenginleştirilmesi hem çok zor hem de endüstriyel olarak gereksizdir. Kil dışı mineraller, diğer killer (illit-smektit gurubu) ve organik madde içeriği ile ball kili plastikliği yüksek çok iyi bir kaolinitik bir kil hammaddesidir. Üretilen kaolinlerin parlaklığı, aşındırıcılığı, vizkositesi ve tane boyu dağılımı-max tane boyu-şekli ve bunlara bağlı olarak reolojisi (su +kil davranışı) çok önemlidir. Bütün bu özellikler de kaolinin oluşum koşulları ile belirlenmekte ve üretim sonrası işlemler ile geliştirilmektedir. Burada “giriş” bölümünde belirtilmesi gereken konu ile ilgili her terime Türkçe karşılık bulunması zorluğudur. Bu nedenle orijinal ingilizce terimler parantez içinde verilmiştir.  “Kil” hammaddeleri kısmında verilen çeşitli sınıflamalara ek olarak ABD jeolojik araştırmalar kurumu istatistiklerinde kullanılan  kil hammaddeleri sınıflaması da aşağıdaki gibidir.

EN UYGUN FİYATLARLA KİMYADEPOSU.COM DA..

  • Kaolin, ball kili, hallosid, ve refrakter killer
  • Bentonit ve Fuller toprağı (Bentonite and Fuller’s earth)
  • Diğer killer ve şeyller (Miccellaneous clay shales) (Common clay)

Bu sınıflamada killerin mineralojik sınıflamasına uygun olduğu görülmektedir, şöyleki

  • İlk grup “kaolinitik killer”
  • İkinci grup “smektitik killer”
  • Son grup“ illitik-karışık killer (illit kaolinit, smektit ve klorit)”

Kaolin, ball kili, hallosid, ve refrakter killer DPT raporlarında şimdiye kadar 2. grup “Kaolin, ball kili, hallosid, ve refrakter killeri” içinde kaolinler ayırt edilmiş geriye kalanlar refrakter killer ve ball killeri yani sedimanter yataklarda oluşan  “kil” veya “seramik killeri” olarak sınıflandırılmış ve diğer killer bentonit, fuller toprağı ve tuğla-kiremit toprakları (diğer killer ve şeyller) sınıflamalarda ve istatistiklerde yer almamıştır. Yukarıda yapılan sınıflama ile  “seramik killeri” ve “kaolinit” şeklindeki sınıflama arasındaki uyumsuzluk  her zaman sağlıklı raporların ve istastistik bilgilerinin verilmesini engellediği için bu raporda rakamlar yukarıdaki sınıflamaya uygun olarak verilmiştir. Minerolojik sınıflama tablosu “kil hammaddeleri” kısmında verilmiştir. Bu tablodan anlaşılacağı gibi kaolinit, bir kil minerali olup  2 tabakalı ve eş boyutludur. Killerin mineralojik sınıflandırılmasında, terminolojide tam bir birlik sağlanamamış ve uzun yıllar tartışılmıştır. Ross ve Kerr kaolin ismini bir grub mineral (kaolinit, dikit, nakrit, ve halloysit) için kullanmış, bazı yazarlarda petrografik bir tanımlama olarak kaolin grubunu kil minerallerinden oluşmuş bir kaya ismi olarak kullanımışlardır. “Kandites” ismi Brown tarafından kaolin grubu kil mineralleri için önerilmiş ve kabul görmemiştir. Killerin bu mineralojik sınıflamasının yanında özellikle seramik hammaddecilerinin kaolinitik kil olarak adlandırdıkları karışımlarda birincil kil minerali kaolinitdir.

Çin kili (China Clay) İngilterede Devon ve Cornwal’de yerinde oluşmuş, kuvars, mika ve feldspat içeren birincil kil minerali olarak kaolinit içeren bir kildir ve Düvertepe Kili/Kaolini oluşumları ile eşdeğerdir. Ball kili denilen hammadde kaoliniti birincil kil minerali olarak içeren sedimanter olarak oluşan bir hammaddedir, genellikle yüksek organik malzeme içeren ve tane boyu olarak Çin kiline göre çok ince taneli ve plastisitesi ve kuru dayanımı yüksek bir kildir. Pişme renkleri ve düşük refrakterliği ise dezavantajıdır. Ülkemizde İstanbul ve Söğüt killeri içinde birincil kil minerali olarak kaolinit içeren  killerde ball kilidir. Oluşum farkından dolayı, yerinde oluşmuş kaolin cevherleşmesi  ile orijinal mineralleri kaolinitten oluşan taşınmış kil yatağı arasında kaolinit minerallerinde de farklılıklar olmaktadır. Bunlar; – Yerinde oluşmuş kaolin cevherleşmesi  içindeki yabancı maddelerin sedimanter kil yatağından daha az olması nedeniyle görünüşleri daha beyaz ve pişme renkleri daha beyazdır.

Yerinde oluşmuş kaolin cevherleşmesi  içindeki kaolinit kristalleri kil yatağında ki kaolinitlere göre daha büyük olup, bu farktan dolayı kaolinitik killer daha plastik ve kuru, mukavemetleri daha yüksektir. -Yerinde oluşmuş kaolin cevherleşmesi içindeki kristaller özşekillidir. Taşınmışlarda ise köşelerden kırılmalar olmuş ve boyları daha küçülmüştür

EN UYGUN FİYATLARLA KİMYADEPOSU.COM DA..

Refrakter killer, Ateş kili ve  Flint kili Ateş kili (fire clay) kömür yataklarında kömür ile birlikte oluşan ve asidik ortam nedeni ile alkalilerin tamamen ortamdan uzaklaştığı sedimanter, ince taneli kaolinitik bir kildir ball kilinden farkı daha az alkali ve Al zengin bohmit ve disaspor  içermesi renkli pişmesidir ve bu nedenle refrakter özellik göstermesidir erime sıcaklıkları PCE 19-37 arasındadır. Norton açık renkte pişen ve refrakterlikleri PCE 19-37 arasında olan kaolin ve ball killerini bu sınıfa dahil etmemektedir. Renkli pişen ve SK 19-37 arasındaki killeri refrakter kil olarak değerlendirmektedir. Seger konileri (PCE) SK ile belirlenen ASTM  C24 standartlarına göre ölçülen 19 ve 37 arasındaki koniler arası erime sıcaklığı olan killer refrakter killer olarak tanımlanır. Bu aralıkta bir kil “kaolin” de “ball kili” de olabilir ve “refrakter kil” olarak adlandırılabilir. Ateş kili terimi asidik bataklık ortamında oluşum ortamı nedeni ile yüksek Al ve Al zengin kil dışı mineraller (böhmit, diaspor, boksit) içeren killer için kullanılır. Ateş killerinde kaolinit minerali iyi kristalli ve al zengin mineral içeriği yükesek ve sert konkoidal kırılan şekli  “Fint clay” olarak adlandırılır. Bunun yanında ateş killerindeki kaolinler genellikle “b eksen düzensiz” “  ateş kili minerali” dir, yani kötü kristallidir.  DTA eğrilerinde 200 C ciıvarında iyi kristalli kaolinlerde gözlenmeyen bünyelerindeki suya ait endotermik pikler gözlenir. Bu gurub killer “kaolin” dışında kil hammaddeleri içinde değerlendirilir.

EN UYGUN FİYATLARLA KİMYADEPOSU.COM DA..

Diğer killer ve şeyller (Miscellaneous clay and shales) (Common clay) Tuğla kiremit ve stonware kili olarak veya tuğla-kiremit toprakları diye isimlendirilen bir kısım killi hammaddeler yüksek demir içerikleri ve  genellikle  kaolinit, illit, smektit, klorit ve karışık tabakalı kil minerali içerikleriyle karakterize olurlar, kalsiyum ve organik madde içerikleride yüksektir. Oluşum itibariyle, feldspat ve mika  içeren granitik veya volkanik kayaçların yerinde vaya bunlardan türeyen klastiklerin feldispat egemen kumtaşları (arkoz) bozunması (wheathering) ve değişimi (alteration) ile  kaolinit mineraline dönüşmesi sonucu kaolin yatakları oluşmaktadır. Ana kayaç içindeki alkali ve toprak alkali iyonların, çözünür tuzlar şeklinde ortamdan uzaklaşması sonucu zengin Al2O3 içerikli sulu silikatlar içeren minerallerden oluşan kayaçlar oluşur. Bütün kaolin gurubu mineraller aynı kimyasal bileşimde ancak değişik uzaysal oriyantasyonaları olan (yapısal ve sıralanma farkları) olan minerallerdir. Dünyada yerinde oluşmuş kaolin yatakları sedimanter yani ikincil yataklardan fazladır çünki sedimanter yatakların oluşması ve korunması çok özel jeoljik koşulları gerektirmektedir. Kaolinit mineralleri çok değişik derecelerde kristallenme göstermekte ve bu ölçülmekte ve  Hinckley indexi olarak XRD grafiklerinden saptanmaktadır. Genellikle yerinde oluşan yataklarda kristallik derecesi taşınmış kaolinitlerden yüksektir bu durum plastikliği azaltmaktadır.

2 Kal Si3O8 + 3 H2O = Al2Si2 O5 (OH)4 + 4SiO2 +2K (OH)

K Felds                Su Kaolinit                      Silika              Potas

Bu oluşum çok miktarda yağış, hızlı drenaj  ve ılık ve tropikal iklim, su tablasının çözülenleri taşıyacak düzeyde olması yani topoğrafyanında önemli olduğu bir koşullar birliği gerektirmektedir. Bu oluşum modeline göre altere olan ana kayacın taşınmadan bozunarak yerinde kalması sonucu birincil veya kalıntı kaolinit yatakları oluşur. Ana kayaçların bozunma öncesi taşınıp, taşındıktan sonra depolanması veya bozunma sonucu taşınıp  depolanması sonucu kaolinitin başat mineral olduğu sedimanter kil yatakları oluşur. Bazı sedimanter kaolinit yataklarında kaolinit yanında illit, diğer kil dışı mineraller ve organik maddece zengin olarak ball kili tipinde bazıları ise kaolin zengin (Georgia kili) yataklar oluşmaktadır. Ball killerinde yerinde oluşan kaolinlere göre daha plastik ve pişme dayanımı daha yüksek kaolinitik killer oluşmaktadır. Ana kayaç olan  riyolit  ve  granitler içinde kaolinleşmeyi sağlayan sular, ana kayaç parçacıkları ile birlikte silikat bünyesinde olan SiO2, K+, Na+, Fe2O3, S, CaO, MgO kısmen  orijinal bünyeden uzaklaştırılmakta yada suların tesiri sonucu çeşitli bileşenlere dönüşmektedir.

SiO2, silika, orijinal kayaç bünyesinde belirli kısmı Al2O3 ile birleşerek kaoliniti meydana getirmekte, fazlası ise dışarıya atılmaktadır. Kaolinleşmeyi sağlayan eriyiklerin dışarıya atılması sırasında silisin belirli bir kısmı cevherleşme yüzeyinde demirli-silisli şapka şeklinde kabuk halinde kalmaktadır. Dışarıya atılamayanlar ise cevherleşme içinde serbest silis taneleri şeklinde veya kaolinleşme içinde opal (silis) bantları şeklinde kalmaktadır. Kaliteyi belirleyen en önemli unsurlardan olan silislerin bünyeden yoğun olarak atılması halinde kaliteli kaolin cevheri meydana gelmektedir. İçinde serbest silis tanesi olarak kalan kaolinler ise, daha kolay ayrıştırılabildiğinden süzülebilir kaolin niteliği kazanmaktadır. Fe2O3 : Orijinal kayaç bünyesinde yer alan demirin kaolin içinde olmaması istenilen en önemli kriterden biridir. Ancak kimyasal işlem sırasında demirin belirli bir kısmı kaolinleşme sırasında uzaklaştırılamadan kalmaktadır. Alkaliler ve Al2O3 : K2O + Na2O, Kaolin oluşunda belirtilen feldspatların bozunması sonucu kaolinleşme olmaktadır. Feldspat K2O.Al2O3.6SiO2 (Potasyum), Na2O.A22O3.6SiO2 (Albit) ne kadar fazla bozunursa, ortamdan o kadar fazla K2O ve/veya Na2O atılmaktadır. Bunların atılması (ortamdan uzaklaştırılması) ne kadar fazla olursa, kaolinleşmeyi belirleyen Al2O3 oranını o kadar artacaktır. Asidik bataklık yani kömürün de oluştuğu ortamlarda alkali ve demirin uzaklaşması daha fazla olduğu Al zengin fazlar ile birlikte daha refrakter ateş ve flint killeri oluşmaktadır.

İdeal Kaolin Bileşimi: Al2O3.2SiO2,2H2O olup kaolinitte;

SiO2 (Silika)  % 46.54 Al2O3 (Alüminyum Oksit)  % 39.50 H2O (Su)     % 13.96
             Toplam      % 100.00

 

Kaolin içindeki Al2O3 haricindeki diğer bileşenlerin yüksek olması demek, Al2O3 oranının idealden (% 39.50’den) az olması demektir. Bu da kalitesinin daha düşük olması demektir. SO3 (Kükürt) ve Alunit: Kaolinleşmeyi sağlayan kimyasal işlem sırasında ortamda elementel S varsa; H2SO4+ (Sülfürik Asit) oluşacaktır. Kaolinleşme işleminin olabilmesi için ortamdan uzaklaştırılabilecek madde, alkalilerden K2O olup, bunun çözünmesi sırasında bazen tamamı uzaklaştırılamamakta ve ortamda bir miktar K kalmaktadır. K, ortamda çözünür halde bulunan; Al2O3 2(SO4)3 + H2O -> 2 Al (OH)3 + H2SO4 şeklinde çözümü Al+3 suda çözünen Si(OH)4 ile birleşerek kaolinit oluşur. Ortamda K geldiği zaman K mevcut Al2(SO3)3 ile birleşerek alunit KAl(SO4)2.12H2O oluşacaktır. Bu nedenle kaolinin bileşiminde alunit varsa K2O oranı ile SO3 den dolayı ateş zayiatı yüksek çıkmaktadır. FeS2 (Pirit) : Kaolinleşme işlemi sırasında Fe açığa çıkması ve ortamdaki S ile birleşmesi sonucu bazen demir sülfür bileşiği olan piritler saçılmış halde kaolinleşme içinde (daha ziyade taban ve yan kısımlarda) gözükmektedir. Ortamda K atılımı olması halinde SO4‘ün belirli kısmı kalacağı için kaolinlerde alunit olması (maksimum % 0.5’e kadar SO4) normal sayılmakta olup, SO4‘ün tamamının ortamdan atılmadığını göstermektedir. Seramik teknolojisinde yukarıda bahsedilen safsızlıkları oluşturan Fe2O3 (demir), SO3 (kükürt) gibi safsızlıklar kaolinlerin en önemli özelliği olup, bunların renk vermesi (Fe2O3), SO3 (kükürt), seramikte fırın sıcaklıklarında başka kimyasal reaksiyonlara girerek seramiğin bünyesini bozması özelliklerinden dolayı istenmemektedir. Kaolinit minerali, seramik yapımında ısıtıldığında 200°C’nin altında higroskopik suyunu bırakır. 500-600°C’de kimyasal formüldeki kristal suyunu bırakarak metakaolinite dönüşür.

Al2O3.2H2O.2SiO2  -> Al2O3.2SiO2+2H2O-> Enerji Metakaolinit

980 °C’de metakaolinit mullit ve silise (kristobalit) dönüşür.

3(Al2O3.2SiO2 2H2O)                     3Al2O3.2SiO2     +      4SiO2        +       6H2O Mullit                                                                        Kristobalit

Pişen kaolinit  980-1000°C’de  mullit ve amorf silikaya ve sıcaklığın yükselmesi ile bir kısım silika da kristobalite dönüşmektedir. Saf kaolinit iyi bir Al –Si karışımı olduğu için bu nedenle kaolinit müllit elde edilmesi için iyi bir başlangıç hammaddesidir.

EN UYGUN FİYATLARLA KİMYADEPOSU.COM DA

KAOLİNLERİN ÖZELLİKLERİ

1-Kaolin ( filim tabakası olarak kaplama) (0.15 µm plakacık kalınlığı)
2-Fiber ve polimer  uzama ve kuvvetlendirme (fiber and polimer extension and reinforcement)(yüzey kimyası çok önemli)
3-Kaolin kimyasal bileşimi, adsorblayıcı ve seyreltici olarak
4-Parlatıcı ajan olarak (kalsine edilmiş kaolin)  Yukarıdaki endüstriyel özelliklerine göre ürün standartları değişkenlik göstermektedir. Bu değişiklikler mineralojik bileşim, kimyasal bileşim, tane boyu dağılımı ve çeşitli reolojik özellikleri itibariyle olmaktadır. Aşağıda kaolinler (monomineral) veya kaolinitik killerden olan ball kili’nin mukayeseli özellik değişimleri verilmektedir

Çeşitli  kaolinlerde istenen ürün özellikleri

Kağıt kaolini

Çimento

Dolgu Kaplama

Porselen

1

2

Seramik

SiO2

48

47

46 – 48

Al2O3

min 35

min 35

min % 30

min % 30

% 28

15 – 30

Fe2O3

max 0.4

max 0.4

max 0.5

max 0.4

max 0.4

max 0.5-1.00

TiO2

max 0.05

max 0.05

max 0.1

CaO

0.2

0.1

0.2

MgO

0.2

0.1

0.5

K2O

1.5

0.5

1 – 1.5

Na2O

0.2

0.2

0.1 – 0.3

SO3

max % 1

max % 1

Eser

max % 1

max % 1

max % 0.2

A.Z.

% 12 – 13

% 12 – 13

% 11 – 13

-2 mikron

% 60

% 80

-5 cm

-5 cm

+10 mikron

max % 10

max % 2

-10 cm

-10 cm

+50 mikron

max % 0.1

max % 0.05

Beyazlık

min % 80

min % 85

Aşındırma

30

50

Viskozite

68 – 70

68 – 70

 

Kaolinit ve hallosit minerallerinin tipik kimyasal özellikleri

Kaolin Türkiye

Kaolin Georgia

Kaolin İngiltere

Hidrate Halloysit

Dehidrate Halloysit

Fe’ce Zengin Halloysit

SiO2

45.0-47.0

45.30

46.77

40.0-46.0

46.20

44.70

Al2O3

37.0-40.0

38.38

37.79

35.0-40.0

39.80

28.10

Fe2O3

0.01-0.8

0.30

0.36

0.01-0.4

0.17

12.80

CaO

0.05-0.6

0.05

0.13

0.2-0.8

0.34

eser

MgO

0.1-0.3

0.25

0.24

eser-0.2

0.02

0.1

Na2O3

0.1-0.3

0.27

0.05

0.1-0.2

0.01

1.70

K2O

0.2-0.5

0.04

1.49

eser-0.5

0.02

TiO2

0.5-0.3

1.44

0.02

0.01-0.2

0.02

H2O

0.2-14.0

13.97

12.97

2.0-14.50

14.00

13.30

 

Seramik ve beyaz çimento kaolenleri  ve refrakter  killerinin kimyasal özellikleri

SERAMİK KAOLİNLERİ*

BEYAZ ÇİMENTO KAOLİNLERİ**

REFRAKTER KİLLERİ

ÇİN KİLİ

FLINT (A.B.D)

SiO2

59.5-73

51-67.5

33.3-44.0

49.5-52.5

44.4-45.9

Al2O3

19.0-28.0

22.0-29.0

36.0-45

30.0-35.0

35.8-38.6

Fe2O3

0.5

0.4

2.0-2.1

0.4

0.55-0.75

TiO2

0.3-0.4

0.4-0.5

0.9-1.0

0.2

2.1-2.28

CaO

0.1-0.2

0.1

0.2-0.3

0.1

0.04-0.06

MgO

0.1-0.2

0.1

0.2-0.3

0.1

0.1-0.4

K2O

0.1-0.3

0.5-2.0

0.2-0.8

0.1

0.3-0.5

Na2O

0.1-0.3

0.3-0.4

0.4-1.0

0.2

0.1-0.4

Ateş Kaybı

6.7-10.5

9.0-20.0

15.0-18.0

13.4-15.0

13.0-14.0

(*) : K-1 K3 Kodlu Killer;  (**) : KCW1 – KCW3 Kodlu Killer  [Esan A.Ş.]

 

Ball kili ve kaolin özellikleri

KAOLİN

BALL KİLİ

+ 10 µm (%)

2-20

– 2 µm (%)

35-70

60-86

– 1 µm (%)

45-80

Kırılma Modülü ( kgf/cm2)

4-15

20-40

Kaplama Yoğunluğu(%)

55-70

60-65

Kaplama Oranı

0.3-2.0

Ateş Parlaklığı

85-92

50-70

Absorbsiyon

15-20

3-13

Büzülme

5-10

5-15

Kaolinit İçeriği

85-97

50-70

ABD kaplama kaolinlerinin fiziksel özellikleri

KAPLAMA  KALİTE

DOLGU KALİTE

HAM ISO PARLAKLIĞI (%)

81.5-90.5

76-84

TAPPI PARLAKLIĞI (%)

86-92

80-86

SARILIK (%)

4-6.5

5.7-8

< 2 µm (%)

80-100

50-80

+ 325 MESH’DE KALAN (%  MAX.)

0.04

0.01

YÜZEY ALANI m2/g

13-22

15-22

% 70 KATIDA VİSKOZİTE

6.0-7.5

Kağıt Sanayinde Kullanılan Kaolinlerde Parlaklık Ve Tane Boyutu Özellikleri

KALİTE

TANE BOYUTU < 2 µm (%)

PARLAKLIK  (%)

NO : 3

73

85-86.5

NO : 2

80-82

85.5-87.0

NO : 1

90-92

87.0-88.0

İNCE No : 1

95

86.0-87.5

DELAMİNATED

80

88.0-90.0

YÜKSEK PARLAKLIK NO: 2

80

90-91

YÜKSEK PARLAKLIK NO : 1

92

90-91

YÜKSEK PARLAKLIK İNCE NO :1

95

90-91

 

 

 

 

 

 

 

 

Seramikte kullanılan kaolinlerin  fiziksel özellikleri

Standart Porselen

Remblend U.K.

Zettltz 1 A

Pleyber GX

Burella 201

Cyprucast

% > 10 µm % <   2 µm Katı Akışkanlık (mm2/dak) Pişme Parlaklığı Katı Konsantrasyonu %

2.2 70 0.35 91 63

17.6 39 2.0 86 65

7.3 67.5 0.46 89.4 59.8

6 61 2.0 91 65

– 39 1.95 91.3 63.2

17.4 57.6 1.4 90.4 70

1180 °C  Toplam Su Çekme % Su Emmesi  % Fırın Parlaklığı %

9 15 88

7.5 16 87

7.9 16.7 91.4

8 19 89

5.5 19.6 92.2

6.3 16.1 87.8

1280 °C  Toplam Çekme% Su Emmesi   %

14 6

11 9

10.9 12.5

12 10

7.5 15

10.4 13.7

 

Seramikte kullanılan kaolinlerin kimyasal bileşimleri

 

Kullanım alanı

SiO2

Al2O3

Fe2O3

TiO2

CaO

MgO

R2O

Parlaklık
Yeni  Zelanda

Sofra Seramiği

49.9

35.5

0.28

0.06

Tr

0.02

0.11

13.91

İngiltere

Sofra Seramiği

47.0

38.0

0.39

0.03

0.10

0.22

1.15

13.0

Çin

Sofra Seramiği

49.0

36.38

0.13

Tr

0.13

0.28

1.86

12.0

Kore

Refrakter

48.0

36.0

1.80

0.10

0.10

0.30

0.40

13.3

İngiltere

Saniteri

48.0

37.0

0.68

0.02

0.07

0.30

1.75

12.5

A.B.D.

Boya Dolgusu

44.4

53.3

0.49

1.74

0.02

0.03

0.32

0.10

A.B.D

Plastik Dolgusu

43.9

53.2

0.38

1.68

0.02

0.05

0.27

0.50

Avustralya

Kauçuk Dolgusu

49.0

37.0

0.83

0.72

0.05

0.08

0.35

13.0

 

Kaolin yatakları oluşum faktörlerine göre 3 şekilde oluşmaktadır bunlar:

  1. İklimsel faktörlerle dönüşüm (Zettlitz tip);
  2. Hidrotermal dönüşüm (Cornwall tip);
  3. Klimatik ve hidrotermal dönüşüm (karışık tip).

Murray, H.H ise “Kaolin, Kaolin and Kaolin” adlı yayınının isminde 3 ayrı kaolini hidrotermal, kalıntı ve sedimanter yataklarda oluşan killer olarak açıklamıştır. Kaolin petrografik olarak bu yatakları oluşturan kayaç ismi ve/veya bu kayacı oluşturan başat kaolin gurubu mineralleri olan kaolinit, hallosid, dikit ve nakritin bulunduğu “kil mineralleri gurubu” ismidir.  En önemli minerali Kaolinitdir (Al2Si2O5(OH)4)  alüminyum hidro silikat bileşimli bir kil mineralidir. Kaolinin fiziksel ve kimyasal özellikleri onun kullanım alanlarını belirler bir kısmı kağıt kaplamacılığında bazıları dolgu,  diğer bir kısmı ise  seramik ve refrakter üretiminde kullanılmaktadır. Bu kullanım alanlarının çeşitliliğini  yatakların oluşumunda etkili olan jeolojik faktörler kontrol etmektedir. Murray meşhur yayınında “Kaolin, Kaolin and Kaolin” adını vermesini bu çeşitliliğe atfetmektedir. Yerinde oluşan kaolin yatakları salt hidrotermal değişim(hydrothermal alteration) veya kalıntı-bozunma (residual wheathering) ile oluşmakta kalıntı-bozunan yataklarda hidrothermal değişim etkileride görülmektedir(Maungaparerua bay and Mahimahi-New Zealand ve Cornwall-England yataklarında olduğu gibi).

Kaolinin yanında illit smektit gurubu, kil dışı mineraller ve organik maddelerin olduğu ball kili tipi yataklar olduğu gibi Georgia and South Carolina yataklarında olduğu gibi % 90 -95 kaolinit minerali içeren dünyanın en büyük “kaolin” yatağı da sedimanter yataklardır. Kökensel olarak Georgia ve ball kili yatakları aynı olduğu halde mineralojik bileşimleri çok farklıdır bu nedenle kullanım yerleri de farklıdır. Georgia killeri ball kili gibi sedimanter bir yatakda bulunduğu halde tek mineralli monomineralik bir  “kaolin” yatağı olarak kabul edilir. Kil yatakları kökensel olarak  hidrotermal, kalıntı ve sedimanter olarak üçe ayrılır ve genel olarak  ilk ikisinde “kaolin” üçünçü de ise “ball kili” oluşur ve hepsi başat olarak kaolinit içerir.  Sedimanter olarak oluşan Georgia killeri de “kaolin” dir (% 90-95 kaolinit). Kaolinin yüksek miktardaki üretimine karşılık, sadece birkaç ülkede birinci kalitede ve kaplama nitelikli kaolin yatakları bulunmaktadır. Kaplama (astar) kaolinin başlıca üreticisi olarak iki bölge egemendir. Bunlar; kuzeyde yeralan ABD ve Latin Amerika’da ise Brezilya’dır. Bununla birlikte Meksika’nın düşük çaplı üretiminin gelecek yıllarda 150,000 – 300,000 ton/yıl kapasiteye ulaşabileceği kaydedilmiştir. Başlıca yataklar; ABD, İngiltere, Brezilya ve Avustralya, daha küçük olanları ise Batı Almanya ve İspanya’da yer almaktadır. Dolgu niteliği taşıyan kaolin yatakları ise; Hindistan, Çekoslovakya, Romanya, Endonezya, Tayland, Güney Kore, Çin ve Sovyetler Birliği’nde bulunmaktadır.

Hidrotermal yataklar

Çin halk cumhuriyeti Jingsu bölgesinde bulunan Suzhou yatağıdır. Değişik karakterde birincil kayaların hidrotermal alterasyonu ile değişik özellikte kaolinler oluşmuştur. Başat kil minerali kaolinit ve hallosiddir, alunit serisit kuvars pirit ve kalsedon aksesuar mineral olarak bulunur. Yaş methodlar ile zenginleştirilen kaolinler seramik sektöründe kullanılmaktadır. Japonya Hidrotermal yataklar Japonya’da çoktur. En büyüğü Okayam’daki Itaya’dır. Rosecki adı verilen sert kaolinit yanında diaspor, pirofillit içerir. Pleysitosen vokaniklerinin hidrotermal alterasyonu ile nakrit, dikit ve hallosid yanında alunit de bulunur. Meksika 100,000 ton’dan fazla kaolin üretimi yapılan Meksika da 9 ayrı bölgede vardır.  Üst senozoyik vokanik kayaların hidrotermal alterasyonu ile oluşmuştur.  Refrakter kaolinler düzensiz kaolinler  ve çok küçük tane boyunda kuvars dan oluşur. Guanajuato kristobalit içern kaolinler dikit ve nakrit de içerir.

Residual yataklar

Avustralya Melbourne kuzeybatısında bulunan Ballarat ve Pittong yatakları granitlerin bozuşması ile oluşmuştur. Kuvars ve hallosid kaolinitin yanında bulunur. Yaş işlemle zenginleştirilir. Çekoslovakya Karlovy- Vary bölgesinde buluna yataklar granitlerin bozunması ile oluşmuştur.  Kretase ve Palosende oluşan kaolinler seramik, refrakter ve dolgu hammddesi olarak lastik ve kağıt endüstrisinde kullanılmaktadır. Almanya Dresden yakınında Kemmlitz de bulunan yataklar volkanik ignimbiritler ve porfirik andezitlerin bozunması ile oluşmuştur. Cok az miktarda karışık tabakalı illit ve smektit kaolin ve kuvars yanında bulunur. Avrupanın en eski kil yatağından üretilen kaolinler Bohemya masifinin granodiyoritleri. granitleri ve grovakları Kretaseden beri bozunmuş ve oluşmuştur, refrakter ve dolgu hammaddesi olarak lastik ve kağıt endüstrisinde kullanılmaktadır. Endenozya Java denizinde Belitung ve Bangka adalarında porfirik biotit granitin bozunması ile oluşmuştur. Feldispatlar kaolin ve halloside dönüşürken biotitler hidrobiotit ve vermikulite dönüşmektedir. Tipik tropikal yağışlı ve yüksek su tablasının bozunması ile klasik mineral bileşimi gözlenmektedir.

Ukrayna Prosyanosvskoe, Glukhovetskoe, Veliko- Gradominestkoe ve Turbosvskoe yatakları Erken Mezosoyik de granitik kayaların bozunması ile oluşmuştur.  Mika, kuvars kaolinitin yanında bulunur. Seramik ve kağıt endüstrisinde kullanılır.  İngiltere-Cornwall Dünyanın en büyük yerinde oluşmuş yatağıdır.  St Austell granitinin düşük Fe yani biotitsiz bileşimi ve matriksin öncel hidrotermal değişimi, mesojen ve superjen fazların bozunması ve düşük eğimli topografyası kaolinleşmeyi karakterize eder. Hidrotermal eriyiklerin etkisini gösterir eser element varlığı saptanmıştır.  Muskovit, kuvars ve feldispat kaolinit yanında bulunur.  Kağıt ve seramikde ve plastik , boya ve lastik üretiminde kullanılır. Yerinde oluşmuş bir kaolin yaytağıdır ,hidrotermal oluşumlu yatakta, 40 ayrı ocakta yılda 20-25 milyon ton tüvenan cevher üretilmektedir. Rezervi çok büyük olan bu yatak ile İngiliz ECC firması Avrupa’da tekel konumunda bulunmaktadır. Tesisten çeşitli kalitelerde ürün eldesi gerçekleştirilmektedir.

Yeni Zelanda Maungaparerua, Matauri korfezi ve Mahimahi yatakları Auckland’ın 210 km kuzeyindir. Riyolitik kayaların hidrotermal alterasyonundan sonra kalıntı-bozunması ile oluşmuş hallosid yatakları oluşmuştur. Dünyanın en fazla hallosid içeren kil yatağıdır. En beyaz pişen ve translucency için Japonya, İngiltere ve ABD ihraç edilir.

Sedimanter kaolin yatakları

Avustralya Queensland kuzeydoğusundaki Cape York yarımadasında bulunan Weipa kaolin yatağı kaolinitic kumları Tersiyer yaşlı boksitler ile örtülmüştür. Boksitin altında “pallid zone”  demir benekli  kaolin boksitik kaolin ve kuvars kumundan oluşmuştur. Kretase veya Tersiyer yaşlı yatak çok az smektitik kil içerir ve yüksek katı yüzdesi( % 70) ile çok iyi vizkositeye sahiptir Brezilya Amapa bölgesindeki Amazon deltasındaki Jari nehrinin doğu kıyısında pekişmemiş kumlar, kumlu killer, kaolin ve konglemera serisi oluşan sedimanter kaolin yatağı Pliyosen yaşlıdır.  Sıcak iklimde ve bol yağışlı iklimde oluşan kaolinler Beterra kili olarak adlandırılır.  Yağmur ormanı asidleri ile lateritleşen bu zon büyük boksit yataklarıda oluşturmuştur. Smektitik ve illitik killer ile beraber bulunan kaolin küçük miktarlarda kuvars içerir. Kaolinit mineralleri çok ince tanelidir.  Guyana kalkanında bozunmuş granitlerden itibaren oluşan kaolin özellikle kağıt kaplamasında kullanılmakta vizkozitesi dünyada çok iyi olan birkaç yatakdan biridir. Almanya Hirschau ve Schnaittenbach Bavyera da kaolin yataklarının bulunduğu yerleşim alanlarıdır.

Triyas yaşlı Arkozik kumların bozunması ile oluşmuş bu yatak % 75-85 kuvars  % 10 kaolinit geri kalan is e kısmen bozunmuş feldispatdır. Spain Kretase yaşlı kaolinitik kumlar Guadalajara ve Valensiya bölgesinde bulunmakatadır. Almanya Hirschau yatağı gibi kaolinit yanında kuvars kumu bulunmaktadır. Kökensel olarak kretase yaşlı arkozik kumtaşının bozunması ile oluşmuştur. ABD Dünyanın en büyük kaolin yatağı Georgia- South Carolina da bulunmaktadır. Geç Kretase –Erken Tersiyer yaşlı bu yatağın klastikleri Piedmont masifi kristalen kayalarından türeyen malzeme lagün, ve oxbow göllerde ve havuzlarda kıyı boyunca 400km -50 km (genişlik) de birikmiştir.  Doğu Georgia’daki Tersiyer yaşlı kaolinler ( ince taneli fillitlerin bozunması ile oluşmuş) ile Kretase yaşlı kaolinlerin kökenleri  ve  sert ve yumuşak karekterleride ayrıca birçok araştırmacı tarafından incelenmiştir. Kullanım alanları 1-En önemli tüketim alanı kağıt sanayiidir. Dolgu ve kaplama olarak 10 milyon ton/yıl kaolin tüketilmektedir. Yazı kağıtlarının % 30’u kaolinden oluşmakta olup, en önemli alternatifi kalsittir. Kalsitin kaolinin ikamesi olarak görülmesine rağmen, dünya kaolin arzı her yıl ortalama % 5 artmaktadır. Diğer bir alternatif talk olup, bunlar daha ziyade dolguda ikame olup, kaplama işleminde kaolinin ikamesi zor görünmektedir. Dünya üretiminin yaklaşık % 20’sini elinde tutan İngiliz ECC şirketinin yıllık satışının % 75’ini kağıt, % 10’unu seramik, % 15’ini boya ve diğer sanayiler oluşturmaktadır. Dünya kaolin tüketiminde parasal ve tonaj değerleri bakımından, birinci sırayı kağıt sanayii almaktadır. Avrupa pazarında kağıt, dolgu maddesi olarak toplam tüketimin % 40’ı, Amerika pazarında ise bu amaçla toplam tüketimin % 80’i kullanılmaktadır. Özellikle kağıt dolguda Avrupa kaolinle birlikte kalsit de kullanmaktadır. Kuşe-kaplama kağıtta da benzer durum söz konusu olup, özellikle kuşe kağıtta kaolinin kalite bakımından avantaj ve üstünlüğü vardır. Dünya kağıt tüketiminde, kaolin ve kalsite ikame olarak, TiO2, talk vb. de  kullanılmaktadır. Bunların toplam tüketimleri, belirli yıllarda kaolin tüketimini azaltmakla beraber, bu oran çok büyük boyutlarda olmamaktadır. Ancak dünya kalsit tüketimi, kaolin tüketimini etkileyen en önemli unsurdur. 2-Kağıtla birlikte en önemli tüketim alanı olan sofra porseleni, sağlık gereçleri, fayans, elektro porselen v.b yanında boya ve lastik sanayiinde önemli miktarlarda tüketilmektedir.

Seramikte kaolin tüketimi, en çok sıhhi tesisat, porselen ve izalatör sanayiinde olmaktadır. Fayansta tüketim maksimum % 20 dolayındadır. 3- Seramik sektörü dışında kaolinin en büyük tüketimi, boya, lastik ve plastik sanayiinde dolgu maddesi olarak kullanılmasıdır. Son yıllarda büyük artış gösteren beyaz çimento sanayiinde tüketilen kaolinler, kağıttan sonra ikinci sırayı almış durumdadır. Son yıllarda seramik sektörü dışında, kaolinin en büyük tüketimi çimento sanayiinde olup, kaolin tüketim oranı tüvenan üretimin % 30’u mertebesine ulaşmaktadır.Tesis türü kaolinler, cam elyafı, kimya sanayi, ilaç sanayi gibi sektörlerde kullanılmaktadır. Ancak kullanım oranlarının düşüklüğüne rağmen mali portresi yüksek tüketimlerdir. Ayrıca fiberglass (cam elyafı) üretiminin giderek arttığı gözlenmiştir. Bu oran ABD kaolin üretiminin % 5’ine ulaşmaktadır (450 000 ton/yıl).

EN UYGUN FİYATLARLA KİMYADEPOSU.COM DA

KULLANIM ALANI

BAŞLICA ÖZELLİKLERİ
Kağıt Sanayi % 90-100 saf kaolinit minerali aranırken kuvars minerali içermemelidir. Ayrıca parlaklık en az % 85,  tane boyutu % 80  < 2µm ve Brookfield viskozitesi < 7.000 cps olmalıdır [5].
Seramik Sanayi Genellikle  % 75-80 kaolonit minerali içeren kaolinler tercih edilir. Pişme rengi, viskozitesi, sürtünmeye dayanıklılığı, Fe2O3 ve TiO2 oranlarının çok düşük olması ve %  83-91 oranında parlaklık istenir.
Boya Sanayi Su bazlı iç ve dış cephe boyalarında veya esaslı, özellikle sanayi boyalarında titanyum oksit ( anorganik pigment ) , öğütülmüş kalsit tozu ve talk ile birlikte kaolin kullanılır. Su bazlı iç cephe plastik ve latex kalsine edilmiş ve lamine olmayan ( delaminated ) mineral yapısına sahip  kaolinler kullanılır. Bu gruptaki  boyalar % 50 ila % 70 arasında pigment içerir. Yarı parlak ve parlak su bazlı boyalarda kullanılan kaolinin % 98’ i 2 µm’ dan daha büyüktür. Latex boyalarda pigmentler, bağlayıcı reçinelerle beraber, daha iyi örtücülük sağlayan ve binder’ in kırılma indisine yakın kırılma indisi değeriyle ( >1.50 ) kaolin kullanılır.
Plastik Sanayi Güçlendirici ve maliet düşürücü ve katkı malzemesi olarak özellikle viny’ lerde ve polyesterlerde sık kullanılır. Kaolinin en önemli  kullanım alanı;  (PVC) kaplanmış teller ve kablolardır. Kalsine kaolin ve silika yüzey modifiye edilmiş kaolinler PVC’ lerin elektrik direncini arttırmak için kullanılır, çünkü onlar hidrofobik özelliğe sahiptir.
Mürekkep Yapımı Litografik, ofset ve flexografik baskı tekniklerinde ince film içeren yüksek yoğunluktaki mürekkeplerde kaolin kullanılır. Mürekkep filmi 5 ile 15 µm arasında değişir ve parlaklığı korumak için ince taneli kaolin ( 0.2-0.5 µm ) renklendirici pigment ile beraber kullanılır.
Lastik Sanayi Maliyet düşürücü katkı malzemesi  ve güçlendirici olarak en çok kullanılan  sert kaolinin tane boyutu ortalama 0.2 µm’  dan küçük ve yumuşak kaolinlerin ortalama tane boyutu 1.0 µm’ dan küçüktür. Lastik sanayinde istenilen kaolinin sudaki pH’ı 4.5 -5.5 arasında ayrıca, Fe ,Mn  ve Cu gibi elementlerin  çok düşük sınırlar içinde olması istenir.
Cam Elyaf Yapımı Isı izolasyonu ve plastiklerin güçlendirilmesinde kullanılır. Cam elyafın ana hammaddesi silis , kaolin ve kireç taşı ile birlikte  borik asit,  soda ve sodyum sülfattır. Alüminyum camlarda  erime ısısını düşürür, kristalize olmasını önler ve suda diğer kimyasallarda çözünebilirliği azaltır. Cam elyaf üretimi  için istenilen kaolinde % 37 Al2O3 % 44 SiO2 enfazla % 1 Fe2O3 % 2 Na2O ve % 1 H2O olmalıdır.
Diğer Alanlar İzolasyon : Kaolin latex sodyum silikatlı duvar  kağıdı yapıştırıcılarda, alçı panellerde, su bazlı yapıştırıcılarda ve epoxy bazlı yapıştırıcılarda daha iyi viskozite elde etmek, kolay uygulanması ve kolay yayılabilmesi için kullanılır.

Kataliz :  Özellikle petrol rafinelerinde petrol ürünlerinin katalitik dönüşümlerinde kataliz olarak kullanılır. Pek çok katalizler yüksek ısı ve basınç altında çalışırlar. Bu nedenle kaolinler yüksek ısı şartlarına uygundur. Katalitik Konverterlerin ( Kordiyorit ) imalatında (1) talk veya sepiyolit  ve kaolin karışımı (2) kullanılır.

İlaç : Bazı ilaçlarda adsorpsiyon özelliğinden dolayı kaolin kullanılır. Kalsine edilmiş kaolin ( % 90’ ı 2µm altı ) diş macunlarında kullanılır. Ayrıca otomobil ve metal parlatıcılarında, oksitlenmiş yüzeyleri temizlenmesinde kaolin kullanılır. Bu sektörde kullanılan kaolinlerde  en fazla 2 ppm arsenik ve en fazla 20 ppm ağır metallerin bulunması istenir.

Diğer büyük yataklarda, genellikle açık işletme yolu ile üretim yapılmaktadır. Kağıt ve seramik kalitesindeki kaolinler, süzme tesislerinden geçirildikten sonra boyutlarına göre ayrılmaktadır. Bunlar genelde sulu değirmenlerde öğütme ve silis ayırma işlemi sağlandıktan sonra, çöktürme tankları ve hidrosilikonlardan geçirilmektedir. Manyetik seperatör ve havalı püskürtücü ile beyazlığı artırma işlemleri daha ziyade kağıt sanayi için yapılmaktadır. İngiltere Cornwall yatakları, hidrolik yöntem olan tazyikli su ile üretilmekte, koparılan parçalar doğrudan süzme tesislerine taşınmaktadır.

Türkiye kaolinlerinin özellikleri

Türkiye’de tüketilen sektörler açısından kullanılan kaolinlerin kimyasal, fiziksel özelliklerine göre, ürün standartları tablo halinde hazırlanmış olup, dünyadaki ürün standartları ve tüketilen kaolinler arasında ürün standartları bakımından büyük bir fark yoktur. Fabrikalar üretim reçetelerine göre değişik Al2O3, Fe2O3, SO3, TiO2‘li hammadde kullanırlar. Bu kriterlere ve reçetelere göre, kullanım oranları da farklıdır. Ancak fabrikaların kullanıldığı diğer hammaddelerin fiziksel özellikleri kimyasal özelliklerinden daha büyük bir önem kazanmaktadır. Kağıt endüstrisinde kaplama ve dolgu, seramik, boya, lastik ve diğer kullanım alanlarında beyazlık-parlaklık,  aşındırma, tane boyu, dağılımı ve şekli  gibi fiziksel özellikleri önemli olmaktadır. Sayılan fiziksel özellikler kaolinlerin oluşum koşulları mineralojik özellikleri ve kimyasal bileşimleri gibi temel özellikleri ile bağlantılıdır. Örneğin Fe içeriği beyazlık-parlaklık ve kristallik derecesi yani Hinckley indisi ile bağlantılıdır. Sektörlere göre ürün standartlarına örnek tablolar aşağıda verilmiştir.

 

Türkiye kaolin ürün standartları

Kağıt

Çimento

Fayans

Elektro Porselen

Porselen

Frit Kaolini

Dolgu

Kaplama

1

2

SiO2 (%)

55-80

55-60

58-65

58-78

44-46

50-60

78-80

57-60-

Al2O3

13-25

28-30

24-32

15-28

30-35

30-35

min 30

28

Fe2O3

max 1.0

Max  0.6

max 0.6

Max  0.4

Max 0.4

max 0.4

max 0.4

max 1.5

TiO2

max 0.5

Max  0.5

max 0.5

Max  0.4

max 0.4

Max 0.5

Max 0.5

CaO

max 1.0

0.2

0.2

0.1

Max 1

Max 1

MgO

max 1.0

Max 0.5

0.2

0.1

Max 1

Max 1

Na2O

max 1.0

Max 0.10

0.1-0.3

max 1.0

Max 1

Max 1

K2O

max 1.0

Max 0.10

1-1.5

max 2.0

Max 1

Max 1

SO3

max 0.5

Max 0.3

eser

Max  0.2

1-5.0

1-5.0

Max 1

Max 1

A.Kaybı.

5-10

7-9

11-13

5-12

10-14

10-14

5-7

9-11

2 mikron (%) 5 mikron (%)

30-35 35-45

min:85.0 0.3

-5 cm -10 cm

-5 cm -10 cm

Serbest silis

Max % 8

max %0.4

A.Z..

A.Z.

Cr2O3

max 90 ppm

max 80 ppm

Aşındırma

max 30 mg

Max 5 mg

Beyazlık (%)

min 85.0

min 89.0

min 89.0

min 80.0

min 85.0

Viskozite

68-70

68-70

Cins

Ham kaolin

Ham ve Tesis

ham ve tesis

Ham ve Tesis

tesis

tesis

ham

ham

Kaolinlerin Fiziksel Ve Kimyasal Özellikleri

KAOLİN SINIFI

ÖZELLİKLER

1.SINIF

2.SINIF

3.SINIF

İNCELİK, 45 µm elek üzerinde kalan kısım, ağırlıkça, % En çok

1

2

Ateş Zayiatı, %

En az 12.0

En az 10.5

En az 8 En fazla 15

Al2O3, % En az

36.0

30.0

24

Fe2O3, % En çok

1.0

1.5

2.0

TiO2, % En çok

0.7

1.5

2.0

(Fe2O3+TiO2), % En çok

1.5

2.5

3.0

SO3, %  En Çok

0.5

1.0

2.0

Şekillendirme Suyu, % En az

22

22

20

Kuruma Küçülmesi, % En fazla

8

8

aranmaz

Pişme Küçülmesi, 1350 °C’ da % En fazla

18

18

aranmaz

 

DMRSÜREN Kimya Ltd Şti

0216 4421200-0216 4426626

0552 3307100-0552 3308100

www.kimyadeposu.com

Türkiyenin Kimya Deposu // Kimyadeposu.com

by ozkancol ozkancol Yorum yapılmamış

Güneş yanıklığı zararları ve verim kaybı

Güneş yanıklığı zararı; yüksek sıcaklık, ışık ve radyasyon gibi çevresel etmenler sonucu mey-dana gelen, bunun sonucu olarak da meyve – sebze üretiminde verim ve kalite kayıplarına neden olan fizyolo- jik bir bozukluktur. Günümüz modern meyve yetiştiriciliğinde, meyve çeşidi ve yerel iklim koşullarına bağlı ola- rak, dünya genelinde her yıl %10 – % 50’lere varan ürün kaybı yaşanmakta- dır. Zararlanma sonucu, sebzelerde ve meyvelerde yanıklıklar ya da renk de- ğişimleri gözlenmektedir. Bunun sonucu olarak da, meyve kalitesinde gö- rülen bozukluklar nedeniyle, ürünlerin albenisi azalmakta, pazar değerinin düşmesi nedeniyle de büyük ekonomik zararlara sebep olmaktadır.

Litaratürde sunburn (güneş yanıklığı) olarak tanımlanan hasar sonucu, kütikü- la tabakası ve hücre duvarları incelmek- te, epidermal ve hipodermal hücrelerde sitoplazma zararı görülmektedir. Zarara neden olan 2 ana faktör, meyve üretim alanlarında yaşanan yüksek sıcaklık ve solar radyasyon sonucunda görülen oksidatif strestir.

Oksidatif Stres Nedir?

Oksidatif stres, hücrelere zarar veren ya da hücreleri öldüren reaktif oksijen türlerinin (ROS) ve kimyasal radikalle- rin, bitki hücrelerinde oluşması sonucu ortaya çıkan bir durumdur. Ozon, bu stresin en önemli etkenlerinden biridir. Atmosferin üst katmanlarında bulunan ozon, dünyamızı UV ışınlarının etkisin- den koruduğu için yararlı olsa da yer-yüzünün hemen üst katmanlarındaki ozon (son derece reaktif olduğundan) canlılar için oldukça zararlıdır. Oksidatif strese neden olan çevre koşulları arasın- da; kuraklık, sıcak, don ve UV radyasyon ile fotoinhibisyonu artıran yoğun ışık en başta gelmektedir.

Yüksek Sıcaklığa ve UV Radyasyona Maruz Kalan Bitki Dokularında Gerçekleşen Tepkimeler

Ortam sıcaklığı ve ultraviyole radyas- yon sonucu, bitki dokularında reaktif oksijen türleri (ROS) ve kimyasal radi- kaller oluşur. Bu radikaller, oksidasyon yoluyla hücre zarını parçalar ve dolayı- sıyla hücre ölümü gerçekleşir. Bitkiler oksitadif strese karşı, hücre zarının parçalanmasını önleyen reaktif oksijen

türleri ve kimyasal radikalleri yok eden antioksidanları (stres önleyici bileşikleri) sentezlemek suretiyle tepki gösterirler.

Bitkilerde bulunan en önemli antiok- sidanlar; Alfa (α) – tocopherol (vitamin E), Askorbik asit (vitamin C), karotenoid- ler ve fenolik bileşiklerdir. Bu bileşiklerin arasında, alfa (α) – tocopherol en etkili doğal antioksidandır. 1 molekül alfa (α)

– tocopherol, 220 radikal molekülü etki- siz hale getirir.

Alfa (α) – tocopherol’un en önemli görevi, yüksek hava sıcaklığı gibi çevre- sel stres koşullarında bile hücre zarının fonksiyonlarını stabil halde tutmaktır. Bu süreçte alfa (α) – tocopherol, as- korbik asit ile birlikte ortaklaşa çalışır. Bununla birlikte, askorbik asidin bitki hücrelerinde genellikle yetersiz kon- santrasyonlarda bulunmasından dolayı, alfa (α) – tocopherol anti oksidatif savunma reaksiyonunda belirleyici faktördür.

Güneş Yanıklığı Zararı Nasıl Meydana Gelir?

Zararlanma genellikle hava sıcaklı- ğının etkisinden çok, solar radyasyon kaynaklı gelişir. Örnek verilecek olursa, güneşe maruz kalan meyve kabuğu üzerindeki maksimum sıcaklık, ölçülen hava sıcaklığından her zaman 10 – 18

°C daha fazla olacaktır (Schrader et al 2003a).

Genel kaide olarak, meyvelerde güneş yanıklığı zararı, ortam sıcaklığı 30 °C ve meyve kabuk yüzeyi sıcaklığı 45 °C’nin üzerinde olduğu koşullarda

şekilde görülen güneş yanıklığı zararıdır. Yoğun güneş ışığına maruz kalmış bölümlerde, sarı, kahverengi veya koyu bronz lekeler şeklinde meyve kabuğu yüzeyinde gerçekleşir. Diğer taraftan, yaprakların aksine birçok meyve türü, kabuk yüzeyinden transpirasyon yoluyla oldukça sınırlı serinletme becerisine sahiptir.

Yükseklere çıkıldıkça her 1000 met re rakım artışında, solar radyasyonda

% 10 – 12 artış gözlemlenmektedir. Bu nedenle, dağlık alanlar tehlikeye en açık bölgelerdir. Buna ek olarak, solar radyasyonun atmosfer nemi yoluyla absor- be edilmesinden dolayı, kuru havalarda zarar riski daha yüksektir.

Bazı durumlarda güneş yanıklığı zararı, soğuk hava depolarında bekletilme süresinin sonuna kadar belirgin

Meyvelerde Görülen Güneş Yanıklığı Tipleri

a-       Güneş Yanıklığı Nekrozu

Meyve kabuğu yüzeyinde yüksek sı- caklık artışı sonucu ortaya çıkar. Nekroz- lar genellikle, direk güneş ışığına maruz kalan meyve kabuk yüzeyi sıcaklığının 10 dakika süresince 52 °C ± 1 °C’ye çık- masıyla oluşan, tipik kahverengi veya siyah keskin köşeli alanlar şeklindedir.

b-       Foto – oksidatif Güneş Yanıklığı

Daha çok solar radyasyonun etkisiyle oluşan zararlanmalardır. Genellikle gü- neş ışığına maruz kalan bölgeler önce açık beyaz renklenme göstermektedir ki bu da o bölgedeki kabuk hücrelerinin öldüğünün göstergesidir. Oluşan leke- ler birkaç gün içerisinde yavaş yavaş kahverengileşip, daha sonra kararacak ve nekrotik lezyonlara dönüşecektir. Fe- licetti ve Schrader (2008) belirtmişlerdir ki, bu tip güneş yanıklığı zararı , mey- velerin doğrudan güneş ışığına maruz kalması sonucu solar radyasyonun etki- siyle gerçekleşmektedir.

c-       Kahverengi Güneş Yanıklığı

Özellikle elmalarda yaygın kendini göstererek, birkaç gün içerisin- de zarar belirginleşir. Hücrelerde ölüm görülmez, başlangıç zararı tamamen yüzeyseldir. Asıl zararlanma kendini so- ğuk hava deposunda gösterir.

Güneş Yanıklığı Zararından Korunma Yöntemleri

Dünyanın birçok meyve üretim böl- gesinde her yıl meyve bahçeleri, güneş yanıklığı riski altındadır. Riski azaltmak adına üreticiler çeşitli yöntemlere baş- vurmaktadırlar.Bu yöntemlerden bazı- larına aşağıda değinilmiştir.

Kültürel Yöntemler

a-       Güneş yanıklığı riskine karşı, daya- nıklı çeşitlerin kullanımı.

b-       Su stresini engelleme amaçlı sulama programlarının uygulanması.

c-       En uygun taç şeklinin oluşturulması.

d-       Şiddetli yaz budamalarından kaçı- nılması.

e-       Meyve bloklarının arasındaki hava sirkülasyonunun iyileştirilmesi.

  1. Gölgeleme Ağı Kullanımı

Gölgeleme ağlarının son yıllarda gü- neşin zararlı etkisinden korunma ama- cıyla kullanımı yaygınlaşmıştır. Solar radyasyonun etkisini, % 20 civarında azaltmaktadır. Ortam sıcaklığını azalt- mada etkili olduğu söylenemez.

  1. Sprinkler Sistemlerinin Kullanımı

Kullanım amacı, ağaç tacı üzerinden püskürtme ya da sisleme şeklinde sula- ma yapılarak, günün en sıcak saatlerin- de güneşin yakıcı etkisini azaltmaktır.

  1. Organik veya İnorganik İçerikli Maddelerin Kullanımı

Güneş yanıklığı zararını önlemek amacıyla, kültürel yöntemlerin yanısıra, organik veya inorganik maddelerin kullanımı yaygınlaşmaktadır. Bu maddeleri ve etki mekanizmalarını şu şekilde özet- lemek mümkündür:

a-       Kil mineralleri, kalsiyum karbonat çözeltileri gibi maddeler: Fiziksel bir bariyer oluşturarak, güneş ışığını yansıtma prensibi ile çalışmaktadırlar.

b-       Bazı mumsu maddeler: Güneş ışığını yansıtma ve solar radyasyonu azaltma prensibi ile çalışmaktadırlar.

c-       Bazı organik bileşikler: Güneş ışığını yansıtma ve su kaybını önleme prensibi ile çalışmaktadırlar.

dmrsuren.com

Top